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Abstract

This article describes the Multimission VICAR Planner (MVP) system: an AI planning

system which constructs executable image processing scripts to support Operational Science

Analysis (OSA) requests made to the Jet Propulsion Laboratory (JPL) Multimission Image

Processing Subsystem (MIPS). MVP accepts as input: 1. a set of image �les; and 2. a high-level

speci�cation in science terms. MVP then produces an executable image processing script to

�ll the request. In producing this script, MVP must determine: 1. unspeci�ed but required

processing steps, 2. relevant image processing library programs, and 3. appropriate parameter

settings for such programs. The MVP system embodies a general approach to representing

and using knowledge of procedural tasks such as image processing. This article focuses on the

general approach and the application of the approach to a speci�c area of image processing for

planetary science applications involving radiometric correction, color triplet reconstruction, and

mosaicking using the VICAR programming language. For this speci�c problem the MVP system

signi�cantly reduces the amount of e�ort required by image processing experts to �ll a typical

request.
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I. Problem Description

In recent times, improvements in spacecraft imaging hardware have caused a massive

increase in the amount of scienti�c data and variety of science data products. Simulta-

neously, increased sophistication of instrumentation and image processing algorithms has

greatly increased the knowledge required to prepare image data for analysis. While im-

provements in data storage and database technology have allowed physical access to the

vast amounts of space-related data, preparing and processing available scienti�c data has

become increasingly labor and knowledge intensive.

Development of general purpose data processing languages and interfaces can reduce

this data access, preparation, and analysis problem. These languages and interfaces allow

users to access and process data within a common environment. For image processing,

the VICAR environment (Video Image Communication and Retrieval 1 ) [16] is a major

constituent of JPL's image processing capability. VICAR provides a standard interface

1This name is somewhat misleading as VICAR is used to process considerable non-video image data such as

MAGELLAN synthetic aperture radar (SAR) data.
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to allow a user to retrieve data and apply sophisticated data processing algorithms. The

principal focus of the VICAR system is planetary imaging. Thus, VICAR supports imag-

ing for JPL 
ight projects including VOYAGER, VIKING, MAGELLAN, GALILEO, and

CASSINI. VICAR possesses many unique data processing capabilities relating to these

image sources. VICAR has also been applied to other space imaging missions such as

SIR-C and LANDSAT and instruments such as the Plasma Wave Spectrometer and other

multispectral SAR datasets. The VICAR system has also been applied to numerous

other applications including astronomy, earth resources, land use, biomedicine, and foren-

sics. VICAR is a principal component of the Multimission Image Processing Laboratory

(MIPL). Outside of JPL, VICAR users include universities, the military, research in-

stitutions, aerospace corporations, companies, and Home Institution Image Processing

Subsystem (HIIPS) sites with over 100 users.

VICAR allows individual processing steps (called VICAR programs) to be combined

into more complex image processing scripts called procedure de�nition �les (PDFs). As

one of their primary duties, JPL analysts construct PDFs to achieve tasks such as image

correction, image enhancement, construction of mosaics, creation of movies and render-

ing of objects. Individual processing programs perform many di�erent data processing

functions such as described below:

1. photometric correction - the PHOTFUNC program can correct an image for lighting

conditions due to the relative position of the lighting source, imaging device, and

target;

2. radiometric correction - the FICOR77 program can correct VOYAGER images for

varying camera response depending on camera state and other properties such as

where in the �eld of view the image is read; and

3. line �llin - the GLLFILLIN program can interpolate missing lines in Galileo data

caused by data transmission errors.

In order to ful�ll OSA requests for image processing, analysts use their knowledge of the

processing steps and processing program requirements to create VICAR scripts determin-

ing: the relevant programs to use, order of execution, and parameter settings.

Unfortunately, manual construction of VICAR scripts is both labor and knowledge in-
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tensive. Because of the complexity and amount of program knowledge relevant to the task

as well as the many interacting problem goals, VICAR procedure generation is a labor

intensive task. Generation of a highly complex VICAR procedure may take up to months

of analyst time. The VICAR procedure generation problem is also a knowledge intensive

task in that an analyst must possess knowledge of:

1. image processing and image processing programs (as of 1/93 there were approximately

50 frequently used programs, some having tens options)

2. database organization and database label information to understand the state of

relevant data

3. the VICAR programming language to produce and store relevant information.

One di�culty facing analysts is the diversity of knowledge required to produce expert

VICAR procedures. While certain VICAR users, such as expert analysts, may possess

much of this knowledge, the vast majority of VICAR users are novice to one or more

aspects of this knowledge. For example, a university user may know a great deal about

the science behind the imaging and the theory behind the processing steps but may know

little about the underlying assumptions of the implementation of the processing steps

or VICAR itself. Similarly, a programmer who writes processing programs may be very

knowledgeable about their particular program but may experience di�culty in writing a

VICAR procedure to generate data to test their program. Unfortunately, this situation

increases the load on experts who must spend a signi�cant amount of their time assisting

those less knowledgable. This great need for VICAR knowledge exists because of the

signi�cant time it takes to become pro�cient in multiple aspects of VICAR. Generally, a

VICAR user with 1-2 years of experience is considered a novice VICAR user, while it may

take 4-5 years to become a VICAR expert.

II. An Example of MVP Usage

In order to illustrate how MVP can be used to assist in VICAR planetary image pro-

cessing, we now provide an example of MVP usage to ground the problem and the inputs

and outputs required by MVP. Consider the three images, shown at the left of Figure 1.

These images are of the planet Earth (northeastern Africa and Saudi Arabia) taken during

the Galileo Earth 2 
yby in December 1992. However, many corrections and processing
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Fig. 1. Raw and Processed Image Files

steps must be applied before the images can be used. First, errors in the compression and

transmission of the data from the Galileo spacecraft to receivers on Earth has resulted in

a fair number of missing or noisy lines in the images. Line �llin and spike removals would

correct most of these anomalies. Second, it is desirable to map project the images, in

order to correct for the spatial distortion that occurs when a spherical body is represented

on a 
at surface. Third, in order to combine the images, we need to compute common

points between the images and overlay them appropriately. Fourth, because we are com-

bining multiple images which are likely to have been taken with di�erent camera states,

the images should be radiometrically corrected before combination. These are indicative

of typical image processing goals which MVP addresses.

MVP enables the user to input image processing goals such as map projection and line

�llin through the graphical user interface. Most of the image processing options we are

interested in translate to toggle buttons on the interface. A few options require entering

some text, usually function parameters that will be included as literals in the appropriate

place in the generated VICAR script. Figure 2 shows the inputs to the MVP system. At

left the graphical user interface is shown and at right a textual listing of the corresponding

image processing goals passed from the interface to the MVP system.

After the image processing goals have been speci�ed, MVP is ready to automatically
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radiometric correction
pixel spike correction
fill in missing lines
uneven bit weight correction
no limbs present in images
perform automatic navigation
display automatic navigation residual error
perform manual navigation
display manual navigation residual error
map project with parameters...
mosaic images
smooth mosaic seams using dynamic range matching

Fig. 2. MVP Interface and Sample Problem Goals

generate the VICAR script. Using its knowledge of image processing procedures, the

MVP planner constructs a plan of image processing steps which achieves the requested

goal. After this process has terminated, this plan is translated into a VICAR script. This

script, when run, performs the desired image corrections and constructs a mosaicked image

of the three input �les. The �nished result of the image processing task is shown in Figure

1 on the right. The three original images now appear as a single mosaicked image, map

projected with missing and corrupted lines �lled in.

To further continue this example, shown in Figure 3 is a code fragment to perform

portions of image navigation 2 for a Galileo image 3. The higher-level conceptual steps

(i.e., plan steps) are shown at the left and the corresponding VICAR code is shown at

the right. In this case, the tasks being accomplished are acquiring initial navigation

information, constructing initial overlap pairs, re�ning initial overlap pairs, checking for a

previous tiepoint �le, manually generating or re�ning tiepoints, and constructing the OM

matrix for image navigation. In this case the overall user goal is to navigate the image.

The other subgoals (and steps) are necessary to support this goal due to the dependencies

2Image navigation is the process of determining the matrix transformation to map from the 2-dimensional (line,

sample) coordinate space of an image to a 3-dimensional coordinate space using information on the relative position

of the imaging device (spacecraft position) and a model of the target being imaged (e.g., the planetary body).
3This code was generated by MVP.
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IBISNAV OUT="file_list.NAV" PLANET=target_0_10  + 
   PROJECT="GLL  " SEDR=@RIMSRC FILENAME="file_list.ilist"

!! Construct initial overlap pairs MOSPLOT
MOSPLOT inp="file_list.NAV" nl=lines_0_6 ns=samples_0_6 project="GLL  "
! mos.overlap is just a holder for the overlap plot.
dcl copy printronx.plt mos.overlap 
dcl print/nofeed mos.overlap

!! Refine initial overlap pairs edibis
EDIBIS INP="file_list.OVER"

!! Manmatch mosaic file list
!! If there is no existing tiepoint file.....
!! Check if a tiepoint file exists.

!! The following code is in written VMS
!! LOCAL STR STRING INIT = ""
LET _ONFAIL = "CONTINUE" !! Allow the pdf to continue
                           !! if a file is not found.
DCL DEASSIGN NAME
DCL DEFINE NAME 'F$SEARCH("file_list.TP")
LOCAL STR STRING
TRANSLOG NAME STR
LET _ONFAIL = "RETURN" !! Set PDF to return on error

IF (STR = "")
   MANMATCH INP=("file_list.NAV","file_list.OVER") + 
      OUT="file_list.TP" PROJECT="GLL  " 'SEDR FILENAME="file_list.ILIST"

!! If an old tiepoint file exists...
!! The old tpfile is part of input and later overwritten.
ELSE
   MANMATCH INP=("file_list.NAV","file_list.OVER","file_list.TP") + 
      OUT="file_list.TP" PROJECT="GLL  " 'SEDR FILENAME="file_list.ILIST"

!! OMCOR2
OMCOR2 INP=("file_list.NAV","file_list.TP") PROJECT="GLL  " GROUND=@GOOD
OMCOR2 INP=("file_list.NAV","file_list.TP") PROJECT="GLL  " GROUND=@GOOD

get initial navigation 
information

construct initial
overlap pairs

refine initial 
overlap pairs

find previous 
tiepoint file 
(if present)

use manmatch
program to 
construct or
refine tiepoint
file

use tiepoints
to construct
OM matrix

Conceptual Steps VICAR Code

Fig. 3. Sample VICAR Code Fragment

of VICAR and image navigation.

Thus MVP allows the user to go directly from high level image processing goals to an

executable image processing program. By insulating the user from many of the details

of image processing, productivity is enhanced. The user can consider more directly the

processing goals relevant to the end science analysis of the image, rather than being bogged

down in the details such as �le format, normalizing images, etc. The remainder of this

article is organized as follows. First we describe the basic architecture of the MVP system.

Next we describe the novel features of the MVP system from the perspective of planning

technology. This is followed by a description of the signi�cance and impact of the speci�c

VICAR application as well as a discussion of the generality of the approach. Finally, we

describe related work and conclusions.

III. The Multimission VICAR Planner (MVP)

MVP [4], [5] partially automates generation of image processing procedures from user

requests and a knowledge-based model of an image processing area using Arti�cial In-
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telligence (AI) automated planning techniques [12], [19], [22]. In AI planning, a system

uses: 1) a model of actions in a domain; 2) a model of the current state; and 3) a goal

speci�cation; to determine actions to achieve speci�ed goals. In VICAR image processing,

the actions are VICAR image processing programs, the current state is the current state

of the image �les of interest, and the speci�cation of the desired state corresponds to the

user image processing goals. By partially automating the �lling of basic science image

processing requests, image processing request turnaround time is reduced, analyst time is

freed for more complex and challenging science requests, and analyst workload is reduced.

As an additional bene�t, encoding image processing knowledge in MVP allows valuable

image processing knowledge to be retained by institutions, rather than being lost when

analysts leave or retire.

From a technology standpoint, MVP is signi�cant in several respects. First, MVP in-

tegrates multiple planning paradigms to most naturally represent domain constraints and

human experts' problem-solving methods. Second, MVP uses novel methods to represent

and reason about VICAR program option constraints. These technical contributions are

described in the following sections. Third, MVP embodies an Arti�cial Intelligence plan-

ning approach to solving complex procedural automation problems such as automated

image processing. We believe our approach is general and extends to other procedure

automation tasks. In the discussion section we describe applications of the MVP engine

to other procedure automation tasks to support this claim.

From an applications standpoint, MVP is signi�cant in that MVP is a successfully

deployed Arti�cial Intelligence Planning application which has had considerable impact in

a speci�c VICAR planetary imaging task. Later sections describe the development and

deployment of MVP as well as the impact of the MVP system.

A. The MVP Architecture

The overall architecture for the MVP system is shown in Figure 4. MVP uses two

planning paradigms: decompositional planning [8], [14]4 and operator-based planning [2],

[19]. Because these planning approaches are well understood in the planning literature, we

focus on the adaptation of these methods in MVP to the image processing domain. For

4This approach has also been called Hierarchical Task Network Planning and Task Reduction planning.
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executable
PDF

Processing
Goals

User

VICAR
label

DB
Interface

Decomposition
-based
Planner

Operator-
based

Planner

operator goals,
constraints

assembly constraints

state
info.

PDF
Gen.

plan
segments

Fig. 4. MVP System Architecture

further information on these techniques the reader is referred to the speci�ed references.

To use MVP, the user inputs a problem speci�cation consisting of processing goals and

image information using a menu-based graphical user interface. These goals and image

information are then passed to the decomposition-based planner. The decomposition

planner uses decomposition rules to implement two conceptual types of planning. First,

the decomposition-based planner uses image processing knowledge to classify the overall

problem type which the user has speci�ed in a process called skeletal planning [12]. Second,

the decomposition planner uses this classi�cation to decompose the problem into smaller

subproblems in a process called hierarchical planning [22].

The subproblems produced by the decomposition planner are then solved by operator-

based planning [19], in which a planner uses a description of possible actions (in this case

image processing steps) to solve subproblem goals as indicated by the problem decompo-

sition. The resulting plan segments are then assembled using constraints derived in the

decomposition process. The resulting plan is then used to generate an actual executable

VICAR PDF using conventional macro expansion techniques.

From an AI planning technology standpoint, MVP uses both decomposition and operator-

based planning techniques. MVP uses both techniques for two reasons: search control and

user understandability.

The decomposition approach is needed for search control. Plans in the MVP domain

can be of considerable length (up to 100 steps) and each step (or VICAR program) can

involve reasoning about numerous complex e�ects (often operators have tens of e�ects)5.

5However, it is worth noting that a VICAR script for a speci�c request generally does not contain complex control
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Due to the large search space caused by this complexity, conventional operator-based

planning approaches are not able to tractably construct plans in the VICAR domain

without signi�cant control knowledge. In the decomposition planning paradigm, it is

natural to encode knowledge on how to break up a large problem into smaller subproblems.

In the decomposition component, MVP breaks up a large search space planning problem

caused by the complexity of the image processing problems into several smaller problems,

thus reducing the search encountered during operator-based planning. Indeed, the problem

decomposition rules used in MVP can be considered a very important form of search control

knowledge essential to MVP's image processing capability.

MVP also uses decomposition-based planning for reasons of user understandability. Even

if a purely operator-based planning approach were able to generate plans to solve the

VICAR problems, these plans would be di�cult for MIPL analysts to understand be-

cause MIPL analysts do not consider an entire image processing problem all at once.

Typically, analysts begin by classifying the general problem being addressed into one of

a general class of problems, such as mosaicking, color triple processing, etc. They then

use this classi�cation and the problem context to decompose the plan into several abstract

steps, such as local correction, navigation, registration, touch-ups, etc. Because MVP uses

decomposition-based planning to reduce the original image processing problem, MVP is

able to produce an annotated trace of how the overall problem was classi�ed and decom-

posed. This annotated trace greatly assists the analyst user in understanding the image

processing plans generated by MVP.

B. Skeletal and Hierarchical Planning Using Decompositions

MVP integrates decomposition and operator-based planning paradigms. MVP �rst uses

the decomposition planning framework to break an image processing problem into smaller

subproblems { then solves the resulting subproblems using operator-based planning tech-

niques. In order to break a problem into subproblems, MVP uses knowledge represented

constructs (e.g., conditionals, looping). Most VICAR scripts to �ll a single request would contain few (if any)

conditionals and these few conditionals are easily handled in the macro expansion phase. Most VICAR scripts for

a speci�c request also do not contain loops. In the case where loops occur, they are generally looping over a �nite

set (such as over a known set of image �les). Thus the more general, di�cult problems of automated programming

such as determining loop invariants and termination criteria are not relevant to the VICAR application domain.

DRAFT June 30, 1997



AUTOMATED IMAGE PROCESSING 11

as decomposition rules to perform two types of planning: skeletal planning and hierarchical

planning.

In the following sections, we �rst describe the concepts of skeletal planning and hierar-

chical planning. We then describe how these concepts are implemented as decomposition

rules in the decomposition planning paradigm.

B.1 Skeletal and Hierarchical Planning in MVP

Skeletal planning [12] is an approach to planning which casts planning as a structured

classi�cation problem. In skeletal planning, a planner identi�es a new problem as one

of a general class of problems based upon the goals and initial state. This technique

was originally developed as a model of experiment design in molecular biology; however,

skeletal planning is also an accurate model of how expert analysts attack VICAR procedure

generation problems. Typically in a VICAR problem, there is a central goal for processing

which then dictates a decomposition of the overall problem into subproblems. For example,

a mosaicking problem decomposes into the subproblems of local correction, navigation, and

registration. MVP attacks a VICAR problem by �rst determining the general problem

class, and then using this problem class to perform an initial decomposition of the top-level

image processing goals.

Hierarchical planning [22] is an approach to planning where abstract goals or procedures

are incrementally re�ned into more and more speci�c goals or procedures as dictated by

goal or procedure decompositions. MVP uses this approach of hierarchical decomposition

to re�ne the initial skeletal plan into a specialized plan based on the speci�c current goals

and situation. This allows the overall problem decomposition to be in
uenced by factors

such as the presence or absence of certain image calibration �les or the type of instrument

and spacecraft used to record the image. For example, one common image processing step

is geometric correction, in which a model of the target object is used to correct for di�erent

portions of the target being di�erent distances from the imaging device. For VOYAGER

images, geometric correction is performed as part of the local correction process, as geo-

metric distortion is signi�cant enough to require immediate correction before other image

processing steps can be performed. However, for GALILEO images, geometric correction

is postponed until the registration step, where it can be performed more e�ciently.
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LHS RHS
GI = initial goal GR = reduced goal 
       set/actions        set/actions
C0 = constraints   ==> C1 = constraints
C2 = context N = notes on 

     decomposition

Fig. 5. Decomposition Rule Syntax

B.2 Implementing Skeletal and Hierarchical Planning in MVP using Decomposition Rules

MVP uses the decomposition planning paradigm [14], [8] to implement Skeletal and

Hierarchical planning. In a decomposition approach, decomposition rules dictate how to

attack and resolve 
aws in a plan 6. For example, a decomposition rule might specify a

general method for attacking a particular goal, or how to break a problem into smaller

problems. In many cases, it is possible to decompose a problem in several ways. In these

cases, the planner then searches the space of possible decompositions. Decomposition

approaches are extremely powerful in that many other paradigms (such as modal truth

criterion planning [14]) can be implemented in a decomposition-based approach. The

syntax for a decomposition rule is shown in Figure 5.

This rule states that a set of goals or actions GI can be reduced to a new set of goals or

actions GR if the set of constraints C0 is satis�ed in the current plan and the context C2 is

satis�ed in the current plan provided the additional constraints C1 are added to the plan.

Skeletal planning in MVP is implemented by encoding decomposition rules which allow for

classi�cation and initial decomposition of a set of goals corresponding to a VICAR problem

class. The LHS of a skeletal decomposition rule in MVP corresponds to a set of conditions

specifying a problem class, and the RHS speci�es an initial problem decomposition for

that problem class. For example, Figure 6 shows a decomposition rule for the problem

class mosaicking with absolute navigation.

The simpli�ed decomposition rule shown in Figure 6 states that if mosaicking is a goal

of the problem and an initial problem decomposition has not yet been made, then the

initial problem decomposition should be into the subproblems local correction, navigation,

6For example, an unachieved goal could be considered a plan 
aw and decomposition rules might specify ways

to achieve the goal. Alternatively, a negative interaction between two steps might be a 
aw { decomposition rules

might specify ways in which the interaction could be resolved.
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LHS RHS
GI= mosaicking goal present GR = 1. local

   correction, 
C0= null 2. navigation
C2= an initial classification 3. registration
       has not yet been made 4. mosaicking

5. touch-ups
C1 = these subtasks be

performed in order
1. 2. 3. 4. 5.
protect local correction
until mosaicking

N = problem class is
mosaicking

Fig. 6. Skeletal Planning Decomposition Rule

etc. and that these steps must be performed in a certain order. This decomposition

also speci�es that the local correction goals must be protected during the navigation and

registration processes. In general, MVP permits goals and abstract steps to be speci�ed

in the GI and GR �elds. The left hand side constraints C0, right-hand side constraints C1,

and context C2 specify restrictions on when the rule is applicable, and include :

1. constraints on the ordering of steps or goals;

2. constraints on the assignment of variables representing objects in the plan;

3. goals or steps that must be present in the plan; and

4. goals or steps that must not be present in the plan.

These constraints and context specify restrictions on the situations in which GI can

be performed (or solved) by performing (solving) GR. As such these restrictions are a

convenient place to encode search control information.

Hierarchical planning is also implemented within the decomposition framework. In this

case the LHS speci�es a context in which a set of goals or actions can be decomposed

into a lower level set of goals or actions. For example, the decomposition rule in Figure

7 states that if the limb is present in all of the images (meaning that the sun-facing edge

of the planet is visible in all of the images), for VOYAGER and GALILEO images, the

navigation step can be performed by absolute navigation (a process in which each of the

images can be navigated independently).

This decomposition-based approach to skeletal and hierarchical planning in MVP has

several strengths. First, the decomposition rules very naturally represent the manner in

which the analysts attack the procedure generation problem. Thus, it was a relatively

straightforward process to get the analysts to articulate and accept classi�cation and
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LHS RHS
GI= navigation action present GR = 1. absolute 
C0= null              navigation
C2= the project is VOYAGER C1 = null

or  GALILEO  and N   = null
         limb present in all images

Fig. 7. Hierarchical Re�nement Decomposition Rule

decomposition rules for the subareas which we have implemented thus far. Second, the

notes from the decomposition rules used to decompose the problem can be used to annotate

the resulting PDF to make the VICAR programs more understandable to the analysts.

Third, relatively few problem decomposition rules are easily able to cover a wide range of

problems and decompose them into much smaller subproblems.

C. Operator-based Planning in MVP

MVP uses classical operator-based planning techniques to solve subproblems produced

by the decomposition-based planner. An operator-based planner uses:

1. a model of actions M (in this case the model represents the requirements and e�ects

of individual VICAR steps);

2. a speci�cation of a current state C (this corresponds to the current database state);

and

3. a speci�cation of a goal criteria G (this corresponds to user request speci�cation)

to derive:

a sequence of actions A, that when executed in the current state C, result in a state

which satis�es the goal criteria G. In this case A will correspond to the VICAR script the

user can execute to perform the image processing task at hand.
In operator-based planning, an action is represented in terms of its preconditions (re-

quired to be true before an action can be executed), and its e�ects (true after an action
is executed). For example, in VICAR image processing, the program GALSOS is used
to radiometrically correct Galileo image �les. This would be represented by a planning
action for the GALSOS program, which could be applied to an image �le. This action
would have the precondition that the image �le be a Galileo image �le. This action would
also have the e�ect that the image �le is radiometrically corrected after GALSOS has been
run. The GALSOS operator de�nition is shown below.

operator GALSOS

:parameters ?in�le ?ubwc ?calc

:preconditions

the project of ?in�le must be galileo
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the data in ?in�le must be raw data values

:e�ects

reseaus are not intact for ?in�le

the data in ?in�le is not raw data values

missing lines are not �lled in for ?in�le

?in�le is radiometrically corrected

the image format for ?in�le is halfword

?in�le has blemishes-removed

if (UBWC option is selected) then ?in�le is uneven bit weight corrected

if (CALC option is selected) then ?in�le has entropy values calculated

When constructing a plan to achieve a goal G1, a planner will consider those actions which

have G1 as an e�ect. Thus, if the planner wanted to achieve that a particular image �le

was radiometrically corrected, it would consider applying the VICAR program GALSOS

on the image �le. If a planner decides to add an action A1 to a plan to achieve a goal, it

will then have to achieve all of the preconditions of A1 in a process called subgoaling. For

example, the VICAR program PTP requires that an image �le be in byte format before

PTP can be applied. Thus if the planner decides that it wants to apply the PTP program

to a �le, it then must ensure that the image �le is in byte format. In some cases this

will already be true, in other cases running a program to change the �le format may be

required.

Planning is also complicated by the fact that there are typically interactions between

subparts of the plan. Thus, actions introduced to achieve goals in one part of the plan

may undo goals achieved in another part of the plan. The process of ensuring that such

interactions do not occur is called protection. Protection can involve such measures as

ensuring that the goal is no longer needed when it is undone, or ensuring that the o�ending

action e�ect does not in fact refer to the same object as the achieved goal (by creating a

copy of a �le, for example). Because operator-based planning is not unique to MVP, we

have only brie
y sketched the key elements of operator-based planning, for a more detailed

treatment of operator-based planning algorithms the reader is referred to [19], [2].

C.1 Representing and Reasoning about Program Options in VICAR

One novel aspect of the VICAR domain is that a signi�cant portion of the search to

achieve goals and to enforce protections is not at the program selection level (which cor-
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responds to operator selection in the planning process) but rather at the program option

selection level (which corresponds to the operator e�ect planning level). Thus, when plan-

ning to achieve a goal, MVP searches more to determine how to set program options to

achieve a goal (e.g. how to set variable constraints to satisfy preconditions) rather than

to determine which VICAR program (planning operator) to use to achieve the goal. This

presents a problem for e�ciently reasoning about interacting program options (operator

e�ects) in that certain combinations of program options (operator e�ects) are inconsistent

(i.e., cannot be used together).

For example, when considering operators to achieve a perspective correction, MVP might

need to consider a family of map projection programs (MAP, MAP3, and MAP4) and the

rotational correction program PTP. This search to �nd the correct program is not overly

di�cult. However, for a particular problem, after having selected PTP, MVP would need

to determine which method to use to specify the spacecraft pointing information. There

are ways in which the pointing information could be computed. MVP could use existing

navigation data, from one of many sources: FARENC, basic NAIF, AVIS, etc. Alterna-

tively, MVP could regenerate navigation data from basic NAIF using one of many methods

including NEARENC, FARENC, MANMATCH, AUTOMATCH. Each of these methods

has its own range of applicability and interactions with other parts of the problem. Each of

these methods is represented as a set of program options speci�cations and preconditions

for a conditional e�ect of the operator. Thus, using the existing FARENC data would have

certain preconditions and program option settings which might be incompatible with other

program options. Thus an operator will have a set of condition-e�ect pairs (condition C

e�ect E). The semantics of this conditional e�ect are that if the relevant conditions C are

met when the operator is executed (the so-called conditions) the e�ect E will be true in

the resulting situation.

In most cases, it is not immediately apparent which method is appropriate. In this

situation MVP must perform search among the possible options. Consequently, the ability

to search these combinations of operator e�ects e�ciently when the operator e�ects do

not interact while correctly restricting to those legal combinations is a unique capability

of the MVP planner and represents a capability that other operator-based planners do not

DRAFT June 30, 1997



AUTOMATED IMAGE PROCESSING 17

have.

Due to this di�culty of search among VICAR program options, MVP uses an operator-

based planning component which extends conventional operator-based planning by repre-

senting VICAR program options as variable codesignation constraints. Thus, if a VICAR

program has a program option which allows for several ways to specify spacecraft pointing

information for a particular image processing step, MVP would represent these di�erent

methods as conditional e�ects of a single planning operator, with the appropriate precon-

ditions (including variable codesignations). If certain program options (operator e�ects)

are inconsistent, they would be represented by having preconditions with con
icting codes-

ignation constraints. When using an operator e�ect to achieve a subgoal in the plan, MVP

�rst checks to see if the codesignation preconditions are consistent with the plan, only then

allowing the e�ect to be used (and adding the codesignation constraints to the plan).

For example, returning to our PTP example, the PTP program allows for multiple
images taken at similar times to be corrected to appear as if they were taken at the same
time. This program needs to know the position of the spacecraft relative to the target
of the image (typically the planet center). This information can be speci�ed in one of
several di�erent ways, such as using the spacecraft navigation information, speci�c VICAR
programs which attempt to compute this information from the image (the usual method),
or by specifying the exact pixel location known from previous operations in the PDF.
Typically, an analyst will include VICAR code to derive this information directly from the
image. In this case the exact program and options being used to compute this information
are frequently needed by the PTP program. For example, for the VOYAGER project, if
one wishes to use pointing information previously derived using the FARENC program, it
would be stored in a navigation data structure called SEDR. A simpli�ed representation of
this conditional e�ect is shown below (codesignation constraints are marked by an asterisk
*).

IF

(the SEDRSRC pointing speci�cation is used

and SEDRSRC is speci�ed to be FARENC)* and

(the PC and RPC pointing speci�cation is not used)* and

the project of �le is VOYAGER1 or VOYAGER2 and

appropriate SEDR data �les for �le exist and

the camera number RCAM for the �le has been correctly speci�ed and

the FDS for �le has been correctly speci�ed

THEN

the output image out�le will be registered to the

reference image as speci�ed

This method for representing VICAR program options is important in that it allows for
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independent program options to be reasoned about and constrained independently yet

represents the interaction between con
icting options. For example, the PTP program

option to translate the image during the PTP step, requires that the camera pointing

speci�cation be directly speci�ed using the planet center (PC) and reference planet center

options (RPC), which specify a particular point in the image directly as the planet center.

These options are incompatible with the FARENC source of camera pointing information.

MVP represents this constraint by negative codesignations appearing in the preconditions

of these incompatible options (the *-ed codesignation constraints listed above). However,

non-interacting options such as PTP options to resize the image or to include or delete

the background of the image are not a�ected. These options do not interact with the

speci�cation of pointing information and thusly can be reasoned about independently.

In contrast, most planners do not allow for codesignation constraints on operator e�ects.

Consequently, in order to represent incompatible program options they would need to use

either: 1. contradictory preconditions to enforce disallowed combinations; or 2. break

inconsistent operator e�ects into di�erent planning operators (with each operator repre-

senting a consistent combination of operator e�ects). Option 1 would require the ability

to easily detect inconsistent preconditions when choosing an e�ect and is analogous to our

codesignation method (but more complicated). Not detecting these contradictory precon-

ditions when choosing an e�ect would cause considerable unnecessary search. Option 2

(breaking inconsistent e�ects (program options) into separate operators) requires an in-

crease in the number of operators exponential in the number of inconsistent options (N

pairs of incompatible options requires 2N operators). Even worse, when selecting an oper-

ator which one option decided, the planner would have to arbitrarily commit to decisions

on other program options - potentially causing unnecessary search. As the number of

program options can be quite large (frequently in the tens of options), these are important

representational and search e�ciency issues.

C.2 An Example of Subgoaling in VICAR Image Processing

To illustrate how the operator-based planning process performs subgoaling, consider the

subgoal graph illustrated in Figure 8.7 In this case the user has selected the goal that the

7The VICAR code previously shown in Figure 3 is taken from this example.
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normal = operator precondition satisfied by effect
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effect
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precondition

Fig. 8. Subgoal Graph for Manual Relative Navigation of Galileo Image Files

images be navigated using manual methods and that the archival navigation information

for the image should be updated. The decomposition planner has access to the knowledge

that in order to navigate the image, the operational goal is to construct an OM matrix

which de�nes the transformation from (line, sample) in the image to some known frame

of reference (usually the position relative to the target planet center). The planner knows

that in order to compute this matrix it must have a tiepoint �le, the project of the image,

and the image �les formatted into a mosaic �le list. In order to produce a tiepoint �le for

the goal speci�cation of manual navigation, the planner uses the MANMATCH program.

The MANMATCH program in turn requires a re�ned overlap pairs �le, the project of the

images, the initial predict information, and again a mosaic �le list. The re�ned overlap

pairs �le can be constructed using the EDIBIS program, but this requires a crude overlap

pairs �le based on an initial predict source. This crude overlap pairs �le in turn requires

the default navigation method, and the latitude and longitude of sample image �les. The

rest of the graph is generated similarly. This subgoal graph is generated in response to

the particular combination of user goals and the state of the selected image �les.

C.3 An Example of Resolution of Goal Con
icts in VICAR Image Processing

To illustrate how the operator-based planning process resolves interactions between

steps, consider the (simpli�ed) image processing operators shown in Figure 9. The rele-

vant operators to achieve the goals of missing line �llin, spike removal, and radiometric
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Operator VGRFILLIN GLLFILLIN ADESPIKE FICOR77 GALSOS

Preconditions VGR image GLL image (GLL image) VGR image GLL image
EDR present or ((VGR image) raw pixel values

and (raw values))
Effects missing lines filled in..... spike removal radiometric corr. radiometric corr.

not raw values blemish removal reed-solomon 
overflow corr.

not raw values saturated pixel corr.
not missing line fillin

Fig. 9. Simpli�ed Operator De�nitions

correction for Voyager and Galileo images are shown below. When constructing a plan

to achieve these goals, depending on the project of the image �le (e.g., either Voyager or

Galileo), MVP determines the correct program to use because the preconditions enforce

the correct program selection.

VICAR Program Execution Order

Goal Voyager Galileo Voyager Galileo

�llin missing lines VGRFILLIN GLLFILLIN VGRFILLIN GALSOS

remove spikes ADESPIKE ADESPIKE ADESPIKE GLLFILLIN

radiometric corr. FICOR77 GALSOS FICOR77 ADESPIKE

However, determining the correct ordering of actions can sometimes be complex. In this

case, the correct order to achieve the goals of line �llin, spike removal, and radiometric cor-

rection is dependent upon the project of the �le. In the case of Voyager �les, ADESPIKE

(spike removal) requires raw pixel values and FICOR77 (radiometric) changes pixel values

to correct for camera response function { thus FICOR77 removes a necessary condition for

ADESPIKE (raw pixel values). This interaction can be avoided by enforcing that ADE-

SPIKE occurs before FICOR77. Additionally, VGRFILLIN requires binary EDR header

on the image �le, and ADESPIKE removes the binary EDR header, thus ADESPIKE

removes a necessary condition for VGRFILLIN. This interaction can be avoided by re-

quiring VGRFILLIN to be executed before ADESPIKE. Thus in the VOYAGER example

the only legal execution order is VGRFILLIN, ADESPIKE, FICOR77.

In the Galileo case, GALSOS undoes missing line �llin (the goal achieved by the GLL-

FILLIN operator). Thus in order to avoid undoing this processing, GLLFILLIN must be

applied after GALSOS. Additionally, GALSOS requires raw pixel values, and ADESPIKE

alters the pixel values, so ADESPIKE removes a necessary condition for GALSOS. This

interaction can be avoided by requiring that GALSOS occurs before ADESPIKE.

This simple example illustrates some of the interactions and context-sensitivity of the
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Fig. 10. Problem Space Information

Problem Space # operators goals typ. search

local correction 15 7 60

automatic navigation 20 4 150

manual navigation 24 4 300

photometric correction 5 2 60

registration 13 5 110

mosaicking 4 3 325

touch ups 10 3 325

VICAR image processing application. All of these interactions and context sensitive re-

quirements are derived and accounted for automatically by MVP using the operator spec-

i�cation, thereby allowing plan construction despite the presence of complex interactions

and conditions.

D. On the Impact of Combining Decomposition and Operator-based Planning Methods

One obvious question is the impact of combining decomposition and operator-based

planning methods. Earlier in the article, we stated that the two reasons for combining de-

composition and operator-based methods methods were user understandability and search

control. While it is di�cult to quantify the e�ectiveness of increased understandability of

plans, in this section we attempt to roughly quantify the e�ectiveness of decomposition

methods in controlling the search required by the operator-based planner.

The principle impact of decomposition planning on search is to decompose the planning

process into independent subproblems which can be solved independently in a known

sequential fashion. In the current MVP knowledge base, there are seven such problem

spaces: local correction, automatic navigation, manual navigation, photometric correction,

registration, mosaicking, and touch-ups. In Figure 10, we describe the salient information

on each of the problem-spaces. First, for each problem space we list the number of relevant

planning operators and top-level input goals as this gives some indication of the size of the

problem space. We also list the typical number of plans searched in the problem space.

The overall e�ect of decomposition planning on search is to break down the search into

more manageable subproblems. For example, if subproblem A typically requires searching

� plans and subproblem B typically requires searching � plan, solving both problems
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simultaneously might require on order �� plans8. Overall, because the search spaces

combine (roughly!) multiplicatively, the impact of adding domain knowledge to decompose

subproblems has been enormous. For example, originally the automatic navigation and

manual navigation problem spaces were represented as a single navigation problem space.

However, this problem space required too much search (on the order of 50,000 plans), so

it was broken into the automatic and manual navigation problem spaces.

IV. Significance of this Work

In this section we describe the signi�cance of the MVP system from two perspectives.

First, MVP represents a successful solution to a speci�c problem area in planetary image

processing. Second, the planning technology used in MVP represents a general methodol-

ogy for automating procedure generation tasks. We describe some evidence from multiple

applications that this planning technology is applicable to other domains.

MVP is signi�cant in that it is a successful deployed solution to a speci�c constrained

planetary image processing problem. MVP2.0 is implemented in C and runs on Sun

SparcStations under Unix and Motif and under VMS on Vaxes. MVP is currently opera-

tional and available for use by analysts at JPL's Multimission Image Processing Labora-

tory (MIPL) for the general areas of radiometric correction, color triplet reconstruction,

mosaicking with relative or absolute navigation, registration, and simple �ltering and

stretching tasks. MVP supports roughly 70 VICAR subroutines. The MVP knowledge

base includes about 50 operators, 50 decomposition rules, and tracks roughly 70 attributes

per image �le. The produced plan for a complete problem may contain over 100 operators,

with a typical plan containing perhaps 60 planning operators. These 60 planning operators

would generally correspond to a 100 line VICAR script.

We now speci�cally describe the types of image processing problems which MVP cur-

rently covers. In terms of local correction, MVP performs the following types of correction:

Radiometric Correction - correction for the camera state when imaging, Spike Removal

- smoothing of images, Missing Line Fillin - correcting for missing lines typically from

8This is clearly a simpli�cation, it might require less search than this because weak heuristics might tend to

guide the search well. However, it might be worse because adding the second subproblem might weaken heuristics

that work well for the �rst subproblem alone. Empirically in the MVP image processing application combining

two search spaces A and B as above would result in search slightly less than ��.
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transmission errors. Uneven Bit Weight Correction - correction using Galileo error correc-

tion codes. Reseau Removal - correcting for Voyager camera artifacts, Blemish Removal

- correcting for Galileo and Voyager camera artifacts, and Entropy Value Calculation -

measuring the e�ectiveness of Galileo coding schemes.

In the Automatic and Manual Navigation Phases, MVP supports the following image

processing operations. As part of the basic computation of the required matrix transfor-

mation to recover 3-D imaging information using spacecraft and target body positioning

information, MVP supports several capabilities: Navigation Images using Limb �nding -

using the illuminated portion of the planet to determine the relative position of the planet,

Veri�cation of Limbs Using the CURVES program, Automatic Navigation using VICAR

Automatch Feature Finding Software, Manual Navigation using VICAR Manmatch Fea-

ture Finding Software, Calculation of initial Navigation information using numerous JPL

methods, Display of Residual Error during Each Step of the Navigation Process, and

Updating Archival SEDR.

In the Registration Phase, the image can be translated, rotated, and otherwise trans-

formed in a variety of ways including: translation of planet center, perspective correction

- correcting for planetary or atmospheric rotation in order to combine images taken at

di�erent times, translation based on coordinate references such as latitude and longitude,

map projection, photometric correction and geometric correction.

MVP also supports mosaicking to combine multiple images into a single image using

navigation and registration information from previous phases. Seam smoothing based on

normalization of dynamic ranges is also supported.

In the touch-up phase, MVP supports stretching dynamic range based on various func-

tions (e.g., linear, gaussian, percentile), rotation of images, and several forms of �ltering -

high pass, low pass, and multiple varieties of modulation transfer function �ltering.

It is worth noting that MVP does not fully automate this planetary imaging task. In

typical usage, the analyst receives a request, determines which goals are required to �ll

the request, and then runs MVP to generate a VICAR script. The analyst then runs

this script and then visually inspects the produced image(s) to verify that the script has

properly satis�ed the request. In most cases, upon inspection, the analyst determines that
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some parameters need to be modi�ed subjectively or goals reconsidered in context. This

process typically continues several iterations until the analyst is satis�ed with the image

product.

In order to assess the impact of the MVP system, we asked analysts to estimate the

e�ort required to satisfy typical requests involving radiometric correction, color triplet re-

construction, and mosaicking with relative or absolute navigation, registration, and simple

�ltering and stretching. The analysts estimated that for these tasks MVP reduces e�ort

to generate an initial PDF for an expert analyst from 1/2 a day to 15 minutes and reduces

the e�ort for a novice analyst from several days to 1 hour. This represents over an order

of magnitude in speedup. The analysts also judged that the quality of the PDFs produced

using MVP are comparable to the quality of completely manually derived PDFs. While

these results certainly do not represent a rigorous controlled empirical study (which would

be di�cult due to the variability of requests and the scarcity of analyst time), these results

do represent strong evidence as to the usefulness of the MVP system.

From another perspective, the MVP system represents a general approach of using Ar-

ti�cial Intelligence Planning Technology as a solution to procedure automation problems.

On this front, the MVP planning technology has been adapted to a di�erent domain, that

of generating procedures to operate JPL Deep Space Network Antennas to communicate

with spacecraft [10], [11], [7]. This system, called DPLAN, was demonstrated in February

1995 [11] and will be operational at multiple Deep Space Network complexes by the Fall

of 1996. In a separate e�ort, work is underway to �eld another version of MVP for a

planetary geology group at the department of Geology at Arizona State University. This

version of MVP would be used primarily for map projection and detection and attribute

measurement of geological features in Synthetic Aperture Radar (SAR) image data. In

the MVP JPL application, DSN application, and MVP/ASU application, we were able

to naturally encode planning knowledge in the form of decompositions and operators. As

a result of this experience in representing several domains using the MVP representation

constructs we feel that the techniques and representations have some generality.
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V. Related Work and Conclusions

Related work can be broadly classi�ed into: related image processing languages, related

automated image processing work, and related AI planning work. In terms of related image

processing languages, there are many commercial and academic image processing packages

- such as IDL, Aoips,and Merlyn. Generally, these packages have only limited ability to

automatically determine how to use di�erent image processing programs or algorithms

based on the problem context (e.g., other image processing goals and initial image state).

These packages only support such context sensitivity for a few pre-anticipated cases.

However, there are several previous systems for automatic image processing that use

a domain independent mechanism. Work at the Canadian Centre for Remote Sensing

(CCRS) [3] has been towards a case-based system for image processing and acquisition of

image processing knowledge. This work di�ers from MVP in that they use a case-based

reasoning approach in which an existing image processing problem is solved by retrieving

a previous problem and solution and adapting it to solve the current problem. Grimm and

Bunke [9] developed an expert system to assist in image processing within the SPIDER

library of image processing routines. This system uses many similar approaches in that: 1.

it classi�es problem types similar to the fashion in which MVP performs skeletal planning;

and 2. it also decomposes larger problems into subproblems which MVP performs in

decomposition planning. This system is implemented in a combination of an expert system

shell called TWAICE (which includes both rules and frames) and Prolog. This very basic

implementation language gives them considerable power and 
exibility but means that

their overall system uses a less declarative representation than our decomposition rules

and operators which have a strict semantics [8], [2]. Previous work on automating the use

of the SPIDER library includes [21] which performs constraint checking and step ordering

for a set of conceptual image processing steps and generation of executable code. This

work di�ers from MVP in that: 1. they do not infer missing steps from step requirements;

2. they do not map from a single abstract step to a context-dependent sequence of image

processing operations; and 3. they do not reason about negative interactions between

subproblems. MVP has the capability to represent and reason about all 3 of these cases.

Other work by Jiang and Bunke [13] involves generation of image processing procedures for
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robotics. This system performs subgoaling to construct image processing plans. However

their algorithm does not appear to have a general way of representing and dealing with

negative interactions between di�erent subparts of the plans. In contrast, the general

Arti�cial Intelligence Planning techniques used by MVP use con
ict resolution methods

to guarantee correct handling of subproblem interactions.

Other work by Zmuda [23] describes work in automatically deriving classi�cation soft-

ware by using machine learning techniques. However for the MVP applications, the search

space of possible programs is too large and there is no end feedback (as in classi�cation) to

drive the learning process. Another piece of related work is the SATI system [1] which uses

an interactive dialogue with the user to drive an automated programming approach to gen-

erating code to satisfy the user request. OCAPI [6], a semantically integrated automated

image processing system, while being very general provides no clear way to represent the

large number of logical constraints associated with the problems MVP was designed to

solve. Another image processing system [17] provides a means for representing knowledge

of image analysis strategies in an expert system but does not use the more declarative

AI planning representation. Perhaps the most similar planning and image processing sys-

tem is COLLAGE [15]. The COLLAGE planning di�ers from MVP in that COLLAGE

uses solely the decomposition approach to planning. COLLAGE di�ers from MVP in

the applications sense in that it focuses primarily on earth imaging applications in the

Khoros environment, where MVP has focused on planetary applications in the VICAR

environment.

Other related work in automatic image processing focuses on speeding execution of

algorithms [18], [20] through parallelism but requires that the image processing plans be

manually constructed into task networks whereas MVP automatically constructs the task

network from the goal speci�cation and initial image state information.

From the standpoint of planning technology, MVP di�ers from other planning work in

two ways. First, it integrates decomposition-based (also called hierarchical task network)

and operator-based approaches to more closely model how human experts solve image

processing problems. Second, it uses an explicit constraint model to e�ciently search

among operator e�ects (which correspond to VICAR program options).
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This paper has described the application of AI planning techniques to automate image

processing as embodied by the MVP system. This work is a signi�cant advance in the

state of the art in AI planning technology in that: 1. it represents an integration of

decomposition and operator-based planning paradigms; and 2. it uses explicit constraints

to e�ciently reason about operator e�ects. The AI planning approach represents a general

approach to automating procedure generation problems and we presented evidence to

support this view. The work described in this paper is also signi�cant from an image

processing applications perspective. MVP2.0, a �elded planning system reduces the e�ort

to perform the speci�c VICAR image processing tasks of: radiometric correction, color

triplet reconstruction, and mosaicking for experts from 4 hours without MVP to 15 minutes

with MVP. This successful application is being expanded to cover additional areas of image

processing and �elding to remote university image processing sites.
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